Emissions of organic air toxics from open burning: a comprehensive review
نویسندگان
چکیده
Emissions from open burning, on a mass pollutant per mass fuel (emission factor) basis, are greater than those from well-controlled combustion sources. Some types of open burning (e.g. biomass) are large sources on a global scale in comparison to other broad classes of sources (e.g. mobile and industrial sources). A detailed literature search was performed to collect and collate available data reporting emissions of organic air toxics from open burning sources. The sources that were included in this paper are: Accidental Fires, Agricultural Burning of Crop Residue, Agricultural Plastic Film, Animal Carcasses, Automobile Shredder Fluff Fires, Camp Fires, Car–Boat–Train (the vehicle not cargo) Fires, Construction Debris Fires, Copper Wire Reclamation, Crude Oil and Oil Spill Fires, Electronics Waste, Fiberglass, Fireworks, Grain Silo Fires, Household Waste, Land Clearing Debris (biomass), Landfills/Dumps, Prescribed Burning and Savanna/Forest Fires, Structural Fires, Tire Fires, and Yard Waste Fires. Availability of data varied according to the source and the class of air toxics of interest. Volatile organic compound (VOC) and polycyclic aromatic hydrocarbon (PAH) data were available for many of the sources. Non-PAH semi-volatile organic compound (SVOC) data were available for several sources. Carbonyl and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofuran (PCDD/F) data were available for only a few sources. There were several known sources for which no emissions data were available at all. It is desirable that emissions from those sources be tested so that the relative degree of hazard they pose can be assessed. Several observations were made including: Biomass open burning sources typically emitted less VOCs than open burning sources with anthropogenic fuels on a mass emitted per mass burned basis, particularly those where polymers were concerned. Biomass open burning sources typically emitted less SVOCs and PAHs than anthropogenic sources on a mass emitted per mass burned basis. Burning pools of crude oil and diesel fuel produced significant amounts of PAHs relative to other types of open burning. PAH emissions were highest when combustion of polymers was taking place. Based on very limited data, biomass open burning sources typically produced higher levels of carbonyls than anthropogenic sources on a mass emitted per mass burned basis, probably due to oxygenated structures resulting from thermal decomposition of cellulose. It must be noted that local burn conditions could significantly change these relative levels. Based on very limited data, PCDD/F and other persistent bioaccumulative toxic (PBT) emissions varied greatly from source to source and exhibited significant variations within source categories. This high degree of variation is likely due to a combination of factors, including fuel composition, fuel heating value, bulk density, oxygen transport, and combustion conditions. This highlights the importance of having acceptable test data for PCDD/F and PBT emissions from open burning so that contributions of sources to the overall PCDD/F and PBT emissions inventory can be better quantified. q 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
Assessing exposure to air toxics relative to asthma.
Asthma is a respiratory disease whose prevalence has been increasing since the mid 1970s and that affects more than 14.6 million residents of the United States. Environmental triggers of asthma include air pollutants that are respiratory irritants. Air toxics emitted into the ambient air are listed in the 1990 Clean Air Act Amendments as hazardous air pollutants (HAPs) if they can adversely aff...
متن کاملCurrent Status of Air Toxics Management and Its Strategies for Controlling Emissions in Taiwan
Since the 1970s, hazardous air pollutants (HAPs), so-called air toxics, have been of great concern because they can cause serious human health effects and have adverse effects on the environment. More noticeably, some of them are known to be human carcinogens. The objective of this paper is to investigate the regulatory systems and human health effects of air toxics which have been designated b...
متن کاملEmissions from the burning of vegetative debris in air curtain destructors.
Although air curtain destructors (ACDs) have been used for quite some time to dispose of vegetative debris, relatively little in-depth testing has been conducted to quantify emissions of pollutants other than CO and particulate matter. As part of an effort to prepare for possible use of ACDs to dispose of the enormous volumes of debris generated by Hurricanes Katrina and Rita, the literature on...
متن کاملAnalysis of air toxics emission inventory: inhalation toxicity-based ranking.
Air toxics emission inventories play an important role in air quality regulatory activities. Recently, Minnesota Pollution Control Agency (MPCA) staff compiled a comprehensive air toxics emission inventory for 1996. While acquiring data on the mass of emissions is a necessary first step, equally important is developing information on the potential toxicity of the emitted pollutants. To account ...
متن کاملChemical characterisation of particle emissions from burning leaves
Particulate matter emissions (PM10) from open-air burning of dry leaves were sampled and analysed for a series of organic and inorganic species, including carbon fractions, anhydrosugars, humic-like substances (HULIS), water-soluble ions, metals and organic trace components. The study was performed to investigate whether open-air burning of leaves in rural areas is a potential source of high am...
متن کامل